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Transition metal compounds, especially of the 3d elements, have been the subject of continuous interest in the solid state chemistry research community for many decades, due to the wide variety of electrical, magnetic and structural properties and phenomena which they display. Transition metals with unpaired electrons in their d orbitals display a variety of magnetic behaviors in solids, ranging from the familiar ferromagnetism and antiferromagnetism to much more exotic spin states. 
Temperature dependence of the magnetic susceptibility and field (temperature) dependence of the magnetization reflect the Boltzmann population of the lowest energy levels in the system under study [1]. However, there is  the third thermodynamic function reflecting the separation of the lowest energy levels – the heat capacity. A series of Fe(II) complexes exhibiting the spin crossover with a different extent of the solid-state cooperativeness has been subjected to theoretical analysis. The experimental data on the heat capacity have been directly fitted by considering two models of the spin crossover: with an explicit vibrational partition function, or an effective degeneracy ratio[2].
A description of the magnetic systems is complete only when three experimental response functions are known: magnetization, magnetic susceptibility, and the heat capacity. 
Motivated by the above considerations we would like to address the question of a more complete description of the spin crossover by taking into account the heat capacity data. As the heat capacity hereafter is measured in the zero magnetic field, it refers mostly to the Cp reference. 
The experimental response functions:
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Fig. 1. Experimental (open symbols) and fitted (full lines) thermodynamic functions for [Fe(2-pic)3]Cl2.MeOH (top), [Fe(phen)2(NCS)2] (center) and [Fe(pybzim)3](ClO4)2  (bottom) complexes.
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